Advanced Anatomy and Physiology of the Eye

By Diane F. Drake, LDO, ABOM, NCLEM, FNAO

• Terminology

- Anatomy
- Refractive Errors
- Spherical Correction
- Cylindrical Correction

- Presbyopia
- Muscle Imbalances
- Unequal refractive errors
- Visualizing the Rx

Terminology – A&P

- <u>Anatomy</u> is the branch of biology concerned with the study of the structure of organisms and their parts.
 - Anatomy of the eye is the study of the eye structure and parts
- <u>Physiology</u> is the study of the function of body parts
 - Physiology of the eye is the study of the function/functions of the eye structure and parts
 - In other words how do the parts work?

Terminology

- Emmetropia
- Ametropia
- Myopia
- Hyperopia

• Astigmatism

- Corneal astigmatism
- Lenticular astigmatism
- Regular astigmatism
- Irregular astigmatism

- Simple myopic astigmatism
- Compound myopic astigmatism
- Simple hyperopic astigmatism
- Compound hyperopic astigmatism

Terminology

- Presbyopia
- Greek
 - Presby = Old
 - Opia = Sight

Index of Refraction

- Cornea = 1.37
- Aqueous humor = 1.33
- Crystalline lens = 1.42
- Vitreous humor = 1.33

Dioptric Power

- Cornea
 - +42.00D to +45.00D
 - Performs about 80% of the refraction or bending of light rays within the eye
- Crystalline Lens
 - +15.00D +20.00 D
 - Depending on textbook

Anatomy

Four Refractive Mediums of the Eye

- The cornea
- The aqueous humor
- The crystalline lens
- The vitreous humor

Extraocular Structures

- Eyelids
- Orbit
- Lacrimal glands

Eyebrows

- Help shield the eye from strong light
 - Hairs grow laterally, so they protect the eye from perspiration and rain from running into eye
 - Sebaceous glands present to help protect eye
 - Help to give facial expression

- Palpebrae
 - Folds of tissue
- Termed palpebral aperture
 - While opened
 - Not always same size
- Contain Meibomian glands
- Contain Sebaceous glands
 - Glands of Zeis
 - Glands of Moll

Glands of the Eyelids

- Important in health of eye
 - Lined by palpebral conjunctiva
 - Help to keep eye moist
 - Help to distribute tears, oxygen and nutrients/flush away debris
 - Protects the eye from light and injury
 - Lids are elastic/loose
 - Lose elasticity with age

• Cilia

- On lid margin
- Surrounded by glands of Zeis
- Excessive or altered secretions may cause blepharitis

- Muscles of eyelid
 - Levator Muscle
 - Elevates the eyelid
 - Some function in pumping tears away
 - Orbicularis Oculi Muscle
 - Closes the eye
 - Furrowing
 - Squinting
 - Muller's muscle
 - Short unstripped muscle
 - Contracted while awake
 - When tired, it is relaxed

The Bony Orbital Cavity

Seven bones

- The Maxilla
- The palate bone
- The frontal bone
- The sphenoid bone
- The zygomatic bone
- The ethmoid bone
- The lacrimal bone

From the upper jaw From the roof of the mouth Of the forehead The great wing From the cheek Spongy in structure For the tear duct

- Creates quadrilateral pyramid
 - Forward globes of eyes
 - Rear Optic canal

- Orbit divided into four main parts
- Average size of orbital margin in adults

- The Roof
- The Medial Wall
- The Orbital Floor
- The Lateral Wall

• 35 mm high x 40 mm wide

- Orbit changes with age
 - Changes occur with development of bony structure
 - Sinuses have influence on the orbit

Contents of Orbit

- Muscles
- Nerves
- Vessels
- Fatty tissues
- Eyeball

Lacrimal Apparatus - Tear

Production

- Lacrimal glands
 - Provides reflex tear secretion
 - Irritation
 - Coughing
 - Sneezing
 - Taste or smell
 - Emotion
 - Newborns have minimal output of reflex tears

Lacrimal Apparatus - Tear Production

- Accessory glands
 - Provides basic tear secretion
 - Steady state
 - Wolfring
 - Krause

Lacrimal Apparatus - Tear Production

- Normal tears contain various antibacterial and immune substances to clean and protect eyes
 - Lysozymes
 - Immunoglobulin
 - Depressed in patients with tear deficiency
 - Patients frequently suffer from blepharitis

Lacrimal Apparatus

- Tear drainage
 - Through lacrimal punctua
 - Into canaliculi
 - Tear canals
 - Into nose via lacrimal duct

Lacrimal Apparatus

- Kinetics of the tears
 - Forms thin film over both cornea and conjunctiva
 - Creates tear meniscus
 - Prism
 - Lake

Kinetics of Tears

- Tears move upward and downward with each blink
 - Spreads tears over entire eye and conjunctiva
 - Moves from temporal to nasal

Tear Film / Precorneal Tear Film

Function

- Provides a smooth optical surface over the cornea,
- Flushes away cellular debris, foreign matter from the cornea and conjunctival sac and carbon dioxide
- Provides nutrition for the cornea
 - Supplies glucose and oxygen
- Provides an antibacterial function

Tear Film / Precorneal Tear Film

• Tear Film

- Trilaminar structure
- Three Layers
 - Lipid
 - Aqueous
 - Mucin

Tear Layer

- Outer Layer Oily
 - Lipid
 - Produced by Meibomian glands and glands of Zeis
 - Approximately 0.1 micron thick
 - Prevents evaporation

Tear Layer

- Middle Layer Aqueous
 - Volume 7 microns
 - Provides oxygen
 - Provides nutrients
 - Produced by lacrimal glands, accessory glands of Krause and Wolfring

Tear Layer

- Inner Layer Mucin/Mucoid/Mucous
 - Produced by goblet cells
 - Attaches tears to cornea
 - Decreases surface tension

Tear Film / Precorneal Film

- Composition
- Glucose
 - 2.5 to 4.1 mg/100ml
- Protein
- Enzymes
 - albumin, globulin, and lysozyme
- рH
 - 7.4
 - between 7.3 to 7.7

Tear Film / Precorneal Film

- Tests and Tear
 Integrity
- Schirmer
- Tear BUT
- Rose Bengal

The Tunics of the Eye

- Outer tunic
 - Fibrous tunic
 - Consists of:
 - Cornea
 - Sclera
 - Additionally the limbus

- Middle tunic
 - Vascular pigmented tunic
 - Consists of:
 - Choroid
 - Ciliary body
 - Iris
- Inner tunic
 - Extension of the brain
 - Nervous tunic
 - Retina
First Tunic of the Eye

 Outer Tunic of the eye – Outer Coats of the eye

Cornea

Sclera

- Corneo/Scleral junction
 - Limbus

Cornea

- Physical dimensions
 - Average central thickness: 520µm or 0.52mm
 - Peripheral thickness: 670µm or 0.67 mm
 - Horizontal diameter: 11 to 12 mm
 - Vertical diameter: 9 to 11 mm

Corneal Structure

• Five layers

- Epithelium
- Bowman's layer
- Stroma
- Descemet's membrane
- Endothelium

Epithelium

- 50 μm or 0.50 mm in thickness
- 5 7 cell layers deep
 - Outermost layer
 - Superficial/squamous cells
 - Microvilli
 - Middle layer
 - Wing cells
 - Innermost layer
 - Columnar cells or Basal cells

- Basement Membrane
- Repair rather quickly

Bowman's Layer

- 10 µm = .10 mm in thickness
- Extremely tough Has high elastic properties
- Transparent acellular layer
- Condensation of collagen fibers and proteoglycans
- Collagen fibers are continuous with those of stroma
- Maintains epithelial structure
- Does not regenerate after injury scarring
- Barrier to most molecules

Stroma

- 90% corneal thickness
- Composed of collagen fibrils 30 µm in diameter.
- Run parallel to the surface
- Regular arrangement and spacing of collagen fibers result in corneal clarity

- Lamellae are 2 µm thick (.02 mm)
- Heals with scar formation
- Inflammatory cells infiltrate from vessels at the limbus
- Vessels often invade the stroma during chronic inflammation

Descemet's Membrane

- Posterior limiting layer, 8-12 μm thick
- Comprised of two layers
 - Anterior banded layer developed during embryology
 - Posterior non-banded layer produced by endothelium throughout life
- Condensation of collagen fibers Basement membrane for endothelium
- Will retain shape of stroma when changes occur due to edema or other causes of corneal shape alteration: striae
- Does regenerate after injury

Endothelium

- Single layer of hexagonal shaped cells (20µm in diam), 4-6 µm thick
- Barrier between aqueous humor and corneal stroma
- Maintains corneal deturgescence
 - Pump water out of the stroma through active transport of ions into the anterior chamber
- Site of active pump
- Does not regenerate
- Affected by CL wear

Polymegathism, pleomorphism, and guttata

- Require glucose and oxygen
- Do not replicate: cell count decreases with age and intraocular surgery
- Cells change size and shape with age and contact lens wear

Guttata - Guttae

Normal endothelium
Guttata - Guttae

Sclera

- White of the eye
- Fibrous
- Smooth
- Prevents light from entering the eyeball
- Three types of scleral tissues
 - Episcleral layer
 - Stroma or substantia propria
 - Lamina fusca

Limbus

- Corneo-scleral junction
- Vascular transition zone between avascular cornea and the highly vascularized conjunctiva
- Vessels should be seen to just penetrate the cornea and loop back towards the conjunctiva

Limbus

- Under corneal stress, blood vessels may be seen to grow into the cornea (neovascularization)
- This is an important sign to watch for especially in hydrogel contact lens wear

Conjunctiva

- Thin mucous membrane, running continuous from lid to corneal limbus
 - Palpebral lids
 - Bulbar globe
- Contains goblet cells
 - Produce mucins
- Glands of Krause
- Glands of Wolfring

- Inflammation
 - Conjunctivitis
 - Bacterial
 - Viral
 - Allergic
 - Chemical
 - GPC
 - Symptoms
 - Pain
 - Photophobia
 - Impaired vision
 - Discharge

Conjunctiva

- Blood Supply
 - Becomes injected when conjunctiva is inflamed
- Innervation
 - Very sensitive

The Middle Tunic of the Eye

- The Vascular Tunic
 - The Uvea or Uveal tract
- Contains
 - Choroid
 - Ciliary body
 - Iris
 - Pupil

Choroid

- Vascular layer of the eyes
- Located between the sclera and retina
- Choroid
 - Rich in blood vessels
 - Stretches from optic disc to ora serrata
 - Thickness varies from .1 mm to .2 mm

- In some older people, Bruck's membrane can crack and degenerate
 - Causes partial obstruction of the capillaries
 - Vessels can leak blood into the retina
 - Can be beginning of age related macular degeneration

Ciliary Body

- Annular portion of the uvea
- Triangular shape between choroid and root of the iris
 - Ciliary epithelium
 - Stroma
 - Ciliary muscle

Ciliary Body

- Ciliary processes highly vascular and contain lymphatic spaces
 - Produces aqueous humor
 - In some cases of inflammations such as iritis, blockages can occur, causing papillary block glaucoma, thus the need to keep the eye dilated

Ciliary Body

• Ciliary muscle system controls change in crystalline lens for accommodation

Iris

- Thin vascular membrane
- Average diameter is horizontally 11 - 12 mm
- Average diameter vertically is 9 – 11 mm
- Sphincter muscle and dilator muscle constricts or dilates the pupil

- Iris separates anterior and posterior chambers, creating angle
- Heavily pigmented
 - Colors vary according to the amount of pigment
- Inflammation of iris (iritis)
 - Can be seen as flare with slitlamp

Anterior and Posterior Chambers

Contains Aqueous

- Clear colorless liquid
 - Similar index of refraction as vitreous
 - N = 1.33
 - Pressure of 15-18mm of mercury
 - Increased pressure can cause glaucoma

- Primarily nourishes internal avascular structures
- Brings nutrients and oxygen to lens and cornea
- Removes wastes

Anterior and Posterior Chambers

- Anterior chamber angle important
 - Drainage through Schlemm's canal
 - Inner ocular pressure
 - Production and drainage of aqueous must remain constant
 - Some aqueous used up by cornea and lens
 - Pressure average 15 mm Hg

Anterior and Posterior Chambers

- Aqueous flow
 - Drains through Schlemm's canal
 - Trabecular meshwork
 - Anterior chamber depth varies with age, size of the eye, and whether cataract surgery has been performed

Pupil

- Aperture (Opening)
- Positioned central or slightly nasal
- Undilated pupil size between averages between 2 - 4 mm
 - Dilated up to 9 mm

- Controlled by muscle
 - Muscles of the iris
 - Sphincter
 - Dilator

PupilSmaller at birth

- Largest at early childhood
- Size diminishes with age
 - Senile miosis
 - Pupil reacts to light slower with age

- Difference in pupil size is called anisocoria
 - 17% of people have under 1mm difference
 - 4% have pronounced difference
 - Could indicate pathological problems
 - Should be referred

Pupil

- Three responses watched for during exam
 - Direct pupil constriction
 - Consensual Reflex
 - Bilateral constriction when viewing near objects

- Dilation of pupil performed with mydriatics
- Constriction of pupil performed with miotics

The Crystalline Lens

- Biconvex, transparent body located between the vitreous and the back of the iris
- Semisolid, consisting of elastic capsule surrounding the lens substance
- Avascular structure
 - Nourished and oxygenated by diffusion from the aqueous
 - Minimal from vitreous
 - High demand for glucose
 - Supplied by aqueous

The Crystalline Lens

- Onion like structure continues to add layers throughout life
- Equatorial diameter is 5 6 mm in children
 - Increases to 9 10 mm in adults
- By about age 70, the nucleus comprises virtually the entire lens
- The lens flattens with age and becomes harder
- Lens is approximately 66% water and 33% protein

The Crystalline Lens

- Age related changes cataract
 - Senile
 - Cortical
 - Nuclear
 - Metabolic
 - Diabetic
- Chemical cause
 - Poison
 - Medication
- UV produced
 - Sunshine Cataract

- Congenital
 - Sometimes maternal rubella
 - Others
- Dehydration
 - Due to poor hygiene
 - Heat
 - Diarrhea

Accommodative Anatomy

The Crystalline Lens

The Ciliary Body Ciliary Muscle

The Zonules of Zinn Suspensory Ligaments

Accommodative Anatomy

- Brain recognizes blurred image
- Ciliary muscle contracts and moves toward lens
- Zonule fibers relax
- Crystalline lens bulges
 - Becomes more convex

Accommodative Anatomy

- Axial thickness changes with state of accommodation
- Between 30 to 35 years of age, the nucleus of the crystalline lens starts turning yellow to yellow brown, and becomes larger
- Amplitude of accommodation is about 15 diopters at birth.
- Diminishes to virtually zero by the age of 61
 - Cells of crystalline lens continue to grow, while capsule remains the same
 - This hardening of the lens produces presbyopia

Vitreous Body

- Transparent gel occupies innermost part of eye
 - Between lens and retina
 - Transports nutrients minimal
 - Nutrition from retinal vessels, ciliary body, aqueous
 - Gives shape to the eye
 - Slight attachment at ora serrata and at optic disc
 - Attachment weakens with age
 - Gel becomes less viscous with age, starting from back to front
 - Vitreous detachment can be one cause of later retinal detachments

Inner Tunic of the Eye Retina

- Embryologically, an outgrowth of the brain
 - Connected to brain by optic nerve
 - Optic nerve not a true nerve, but tract
 - Any damage to retina or optic nerve is permanent

- Eyeball is designed around the retina
 - Sclera protects it and gives it shape
 - Choroid nourishes it

Retina Fulfills Double Need

- Rods detect light and movement
 - Long slender cells
 - Provide motion within the field
 - Provide night vision extremely sensitive to light
 - More numerous toward central and front of retina

- Contains 600 to 1000 loosely stacked lamellae within a cell membrane
 - Contains photopigment rhodopsin
 - Molecules of rhodopsin within membranes of lamellae
 - Contain organelles for producing energy and build up of protein
Retina Fulfills Double Needs

- Cones provide detail
 - Contain iodopsin
 - Not sensitive to small amounts of light
 - Reason for no color vision at night
 - Cones more dense in the macula fovea
 - No rods in central fovea
 - Greatest fine vision in the fovea

- Three categories of cones according to photopigments
 - One most sensitive to short wavelength (blue)
 - One most sensitive to green
 - One most sensitive to red

Retinal Blood Supply

- From retinal artery
- Capillary network is densest near macula
- Absent at the fovea and ora serrata
- Outer layers of the retina as well as fovea are avascular
 - Receive nutrients and oxygen from the choriocapillaris in choroid

- Central retinal artery enters the optic nerve about 10 to 15 mm behind eye
- Arteries send out capillaries to two levels of retina
 - Nerve fiber layer
 - Region between inner nuclear and outer plexiform layers

Retinal Metabolism and Visual Process

- Proper nutrients and oxygen required for visual process
- Items come from capillaries in choroid and central retinal artery
- Small amounts of nutrients come from circle of Zinn and vitreous

- Carbohydrate essential to produce energy
 - Drop in sugar critical
- Glycogen stored in retina in glial cells
 - Serves as buffer in changes in concentration of glucose in tissues

Retinal Metabolism and Visual Process

- Retinal photoreceptors sensitive of wavelengths from 380 nm to 750 nm
- In poor light, a person sees blue light better than red
 - Ocular system tends to be more myopic, I.e. "twilight myopia"

Visual Pathway

Retinal Detachment

Visual Pathway

- Optic Chasm
- Optic Tracts
- Optic Radiations
- Visual Cortex

Muscle Imbalances

- Terminology
- Muscles of the Eye
- Possible Corrections

- Diplopia
- Tonicity
- Fusion
- Muscle imbalances
 Strabismus
- Amblyopia

- Rectus means "straight"
- There are four rectus or "straight" extraocular muscles
- Oblique means "slanting"
- There are only two oblique or "slanting" extaocular muscles

- • Medial rectus (MR)—moves the eye toward the nose
- • External rectus (ER)—moves the eye away from the nose
- •Superior rectus (SR)—primarily moves the eye upward and secondarily rotates the top of the eye toward the nose
- **Inferior rectus (IR)**—primarily moves the eye downward and secondarily rotates the top of the eye away from the nose
- •Superior oblique (SO)—primarily rotates the top of the eye toward the nose and secondarily moves the eye downward
- •Inferior oblique (IO)—primarily rotates the top of the eye away from the nose and secondarily moves the eye upward

- Superior Rectus
 - Moves the eye up
- Superior Oblique
 - Rotates the eye so that the top of eye moves toward nose
- Medial Rectus
 - Moves eye toward nose
- Lateral Rectus
 - Moves eye away from nose
- Inferior Rectus
 - Moves the eye down
- Inferior Oblique
 - Rotates the eye so that the top of eye moves away from nose

Diplopia

- Double vision
- Two images perceived from a single image
- Caused by muscular imbalance
- Confusion

Double Vision

Confusion

Tonicity

 The state of slight contraction of all six extraocular muscles of the eye while at rest in order to hold the eye steady in a fixed position

Fusion

 The ability of the brain to form a single image by coordinating the movements of the two eyes so that the visual images fall on corresponding areas of the retinas of the two eyes

Muscle Imbalances - Terminology

- Orthophoria
- Heterotropia

Strabismus - Can lead to Lazy eye or Amblyopia

Muscle Imbalances - Terminology • Eso-

- Exo-
- Hyper-
- Hypo-
- -phoria
- -tropia

Phorias

- Esophoria
 - A tendency of the eye to turn in
- Exophoria
 - A tendency of the eye to turn out
- Hyperphoria
 - A tendency of the eye to turn up
- Hypophoria
 - A tendency of the eye to turn down

Infantile Esotropia

Treatment

- Glasses
- Patching
- Surgery
- Vision Therapy

Amblyopia

- Decreased vision in an eye
- Lazy eye
 - Usually associated with strabismus or anisometropia early in life

Stereopsis

Refraction

- The "bending" of light as it passes <u>obliquely</u> between two different refractive mediums
- A beam of light that enters a refractive medium perpendicularly is not refracted, but merely slowed down and the path of the beam is unchanged

Emmetropia

Ametropia

MyopiaHyperopia or HypermetropiaAstigmatism

Myopia - Near Sighted - Short Sight

Hyperopia - Farsighted - Long sight

Astigmatism

Astigmatism

- Corneal astigmatism
- Lenticular astigmatism
- Regular astigmatism
- Irregular astigmatism

- Simple myopic astigmatism
- Compound myopic astigmatism
- Simple hyperopic astigmatism
- Compound hyperopic astigmatism
- Mixed astigmatism

Corneal Astigmatism

Lenticular Astigmatism

Regular Astigmatism

Types of Regular Astigmatism

- Simple myopic astigmatism
- Compound myopic astigmatism
- Simple hyperopic astigmatism
- Compound hyperopic astigmatism
- Mixed astigmatism

Terminology

- Presbyopia
- Greek
 - Presby = Old
 - Opia = Sight
Presbyopia

- Causes
- Treatment
 - Spectacles
 - Contact Lenses

Understanding Presbyopia

• Age-Related Vision Changes

As we age, our visual system undergoes major changes

- Decline of accommodation
- Senile miosis
- Loss of visual acuity
- Lowered contrast sensitivity
- Increased lighting sensitivity
- Slower speed of visual processing

Change in the Mean Amplitude of Accommodation With Age

Age (Years)	Amplitude (Diopters)
10	10.6 - 13.5
15	10.1 - 12.5
20	9.5 - 11.5
30	6.6 - 8.9
35	5.8 - 7.3
40	4.4 - 5.9
45	2.5 - 3.7
50	1.6 - 2.0
55	1.1 - 1.3
60	0.7 - 1.0

Measured by moving the target toward the subject until first blur is reported (Borish 1970; Turner 1958)

Corrections for Presbyopia

- Rx reading glasses
- OTC readers
- PAL's
- Segmented lenses
- Contacts (Soft and Rigid)
 - Mono
 - Bifocals
 - Modified

- Surgery
 - Explain limitations to your patients
- Others

Conclusion

Thank you